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LIQUID CRYSTALS, 1989, VOL. 5, No. 3, 777-789 

Invited Lecture 

Hexagonal cholesteric blue phases 

by R. M. HORNREICH and S. SHTRIKMANt 
Department of Electronics, Weizmann Institute of Science, 76100 Rehovot, Israel 

Using Landau theory, the possibility that two and three dimensional hexagonal 
structures can exist in cholesteric liquid crystals with positive dielectric anisotropy 
in an applied electric or magnetic field is considered. Both are found to be 
thermodynamically stable in different regions of the chirality-temperature-field 
phase diagram, in agreement with reported experimental data. Further, the theor- 
etical results indicate that two different three dimensional hexagonal phases, 
having the same space group (P6,22) but different structure factors, may exist. 
Ways of verifying this prediction by optical and N.M.R. studies are considered. 
Also noted is the need to develop further the theoretical model to allow for the 
existence of the experimentally observed body-centred tetragonal structure. 

1. Introduction 
It is now well established that, in the absence of an external field, up to three 

thermodynamically stable phases can exist in a narrow temperature range between the 
disordered and usual helicoidal structures in cholesteric liquid crystal systems [ 1,2]. 
Known collectively as cholesteric blue phases (BP), these intermediate phases have 
been studied extensively both experimentally and theoretically over the past decade 
and their properties are, in the main, well understood. For example, there is a wide 
range of data and model calculations [l,  21 indicating that two of these phases have 
cubic structures (BPI, body-centred; BPII, simple cubic). The third, BPI11 (also 
known as the fog or grey phase), is also non-birefringent but, although several 
possibilities have been considered [3,4], its structure remains one of the outstanding 
puzzles in the physics of liquid crystals. 

When an electric or magnetic field is applied, Hornreich et al. [5] pointed out that 
a new phase, having a hexagonal structure, could appear. This prediction was based 
upon a comparison of the free energies of the cubic BP, the helicoidal cholesteric C 
phase, and a simple two dimensional hexagonal one (H2D). Although for physical 
values of the cholesteric pitch, H2D is never thermodynamically stable in the absence 
of an external field, it can become so when a field is applied. This is possible as, in the 
weak field limit, the order parameter couples to the square of the field strength for C 
and H2D whereas, for cubic phases, the coupling is to thefourth power of the field [5,6]. 
Experimental work [7] confirmed this theoretical prediction, there is indeed a region 
in the phase diagram in which HzD is the thermodynamically stable phase. However, 
this was not the only non-cubic structure found. At least three non-cubic BP have been 
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778 R. M. Hornreich and S. Shtrikman 

observed, two with hexagonal and one with tetragonal symmetry [7,8]. There is 
therefore the question as to whether the Landau theory of BP [ 2 ] ,  which successfully 
explained (with no free parameters) the existence of the cubic phases BPI and BPI1 
which appear in the absence of an external field, can also describe the extended phase 
diagram found experimentally when a field is applied. 

We give here a partial answer to this question by extending, in the following 
section, the field-dependent Landau model considered earlier [5] so as to include three 
dimensional hexagonal (H3D) structures as well as H”. The model calculations are 
compared with the available data, and possible avenues for additional experimental 
studies are indicated, Further extensions of the model are discussed in the final 
section, where we also summarize our findings. 

2. Field-induced hexagonal phases 
2.1.  The Landau, free energy 

A convenient form for the Landau free energy functional for the case of cholesteric 
(chiral) systems in the presence of an external field has been given elsewhere. [2b, 5,6] .  
We give, therefore, only a brief summary here. Landau theory is based upon a 
symmetric traceless tensor order parameter which, for the case of an applied electric 
field, may be taken as 

E,,(r) = E:(r) - +Tr(Ed)tjl,, (1) 

where E: is the dielectric tensor. The free energy functional, to fourth order in E,,  itself 
and to second order in c,, and its spatial derivatives, is given by [9] 

r 

- PE,,E,/Ei, + ~(6;)~ - (1/8n)e,ElE,1. (2) 

Here a is proportional to a reduced temperature, d, 8, y ,  c, and c2 are temperature- 
independent parameters, V is volume, el,/ is the usual antisymmetric third order 
tensor, e,,,, = ik,,/dri, E is an applied electric field, and we sum on all repeated indices. 
For thermodynamic stability (i.e. the requirement [2,10,1 I] that F, be positive for 
sufficiently large values of the order parameter and its derivatives), the quantities y ,  
cI and cI + $c2 must all be positive. We use the reduced quantities [2b, 5,10,11] 

Pl] = E l , / ( f i / J 6 y ) 7  f = c//(p4/36y3)> k t  = (3y /P2)a>  

= ( 3 y / p 2 ) c , ,  CZ/cI  = &!, ti = ( c d / c l ) c R  = q C t R v  

X = r / c R ,  PI,./ = Plr/dx/7 V = v/ek, e = E/(471p’/3y2)’’*. 

Equation (2) then becomes 

f z v-1 

Note particularly that the pitch-temperature-field or (K, t ,  e) phase diagram obtained 
by minimizing fcan  depend, at  most, only upon a single parameter, e. Equation (4) 
can also be obtained for the case of an applied magnetic field H by making the 
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Invited Lecture: Hexagonal cholesteric blue phases 779 

following replacements in equations (1)-(3): 

H/(P3/3y2)’’2 ++ E/(47~p~/3y~)”~.  J 
As we are interested in periodic structures, we naturally expand p L , / ( x )  in Fourier 

components [2, 10, 111: 

In equation (6), n = - N ( o ) / 2 ,  . . . , - 1, 1, . . . , N(a)/2 runs over the set of N ( o )  
wavevectors of magnitude q, = lq,, I = al’*q with q,,_, = - q,,, . The parameter a 
(not necessarily integer) indexes wavevectors of different magnitudes. If ,u(, (x) includes 
a q = 0 term, it is labelled by a = n = 0. The wavevector parameter q is dimension- 
less (i.e. it is in units of t i ’ )  and is fixed by minimizing the free energy. In addition, 
for hexagonal structures, one ratio of parameters a is also fixed via energy mini- 
mization. The fixing of these two parameters determines the size and shape, respect- 
ively, of the hexagonal unit cell. 

The tensors [p,(a, n)] can each be expanded in terms of five basis tensors as 
follows: 

2 

[p,,(a, n)l = c P m  (a) e1h(u3n) [Mm (a, n>l 
m= - 2  

0 0 - 1  1 - i  0 

+ p-lel*--l [ 0 0 ;i + p-2e1*-2(-i -; .)1. (7) 
- 1  i 

Here pm(a) 2 0 and we have suppressed the indices (a, n)  on pm and I),,, in the final 
expression. The basis tensors are defined in a local right-handed coordinate system 
(g,  f i ,  [) for each (a, n)  with the polar axis [ = i,,,. The directions of the other two 
axes are reflected in the choice of phases I)~(CJ, n). Requiring that ?(a, n)  = ?(a, - n)  
and fi(a, n)  = -fi(a, -n)  results in t,hm(a, n)  = -@,,,(a, -n).  This prescription 
determines the (a, - n )  term conjugate to each (a, n > 0) one; it thus suffices to 
specify the latter. 

Using equations (6) and (7), the calculation of the quadratic part f; o f f  is 
straightforward. The result is [2b, 10,l I] 

Since, in Landau theory, the explicit q-dependence off appears only in f 2 ,  we have 
df/dq = df@q = 0 and 
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780 R. M. Hornreich and S. Shtrikman 

In some applications, a more convenient quantity is [lo, 113 

r = J 2 d K  = ( q W / ( q c / & .  

Of course, any cr = 0 term in equation (8) is excluded from the sums in equation (9). 
To summarize, the scaled average Landau free energy density of cholesterics has 

the form 

f = a c (t  - tcrnqal’* + [l + &(4 - n?)]q2cr)p;(o) 
a,m 

+ Jdx[-J6P/ ,P/ /P/ /  + (P?/>* - J6P!/e/e/I> (1 1) 

with q determined via equation (9). Our objective is to minimize the free energy 
functional,f([p]) at an arbitrary point in the (K, t ,  e)-space. As noted earlier, there is 
only a single parameter (e) in the scaled free energy expression. 

The primary ingredient of all ordered cholesteric phases can be understood by 
considering the lowest order (quadratic) part of the free energy. For K # 0 the system 
is chiral and the minimum offi is necessarily at q # 0. The thermodynamic stability 
requirement, 1 + $@ > 0, guarantees that the ground state offi lies on the m = 2 
branch of the spectrum. This branch is, in fact, the lowest lying for all (T provided that 
e > 0, a condition satisfied [9] by most liquid crystals near the order-disorder 
thermodynamic phase boundary. It follows that transverse rn = 2 Fourier com- 
ponents are an essential part of the structure factor of all ordered cholesteric phases. 
As was done [2, 10,111 for the cubic BP, we shall restrict the order parameter to have 
only m = 2 Fourier components for all cr # 0. In addition, we allow an rn = 0, 
cr = 0 component in non-cubic structures [2,5,10]. Indeed, it is only this term in the 
Fourier series which couples to the applied field. Then all terms in,fproportional to 
Q vanish and the (K, t ,  e )  phase diagram is parameter-independent. 

2.2. Hexagonal structures 
The e = 0 free energy of a planar hexagonal phase was calculated originally by 

Brazovskii and Dmitriev [12]. Their model was based upon a single equilateral 
triangle of wavevectors (with n > 0), which we label a = oh. These wavevectors are 
of magnitude qb = crL’2q and their respective local axis systems are summarized in 
table 1 .  It is straightforward to show [2b, 101 that the energy of this structure is 

Table 1 .  Wavevectors and associated principal axis systems ( e ,  4, l )  in the Fourier decom- 
position of the order parameter p,,(x). Here q b n  = qoh.,,, etc. 

Wavevectors ([ = 4) 

Nematic-like component: [MO] = [31,5, - 6,,]/J6 with e = (a + .$ + i ) / J 3  and i = x, y ,  z. 
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Invited Lecture: Hexagonal cholesteric blue phases 78 1 

minimized by setting all $*((Tb,  n)  = 0. This structure, however, is never thermo- 
dynamically stable at physically relevant values of the chirality parameter IC [lo, 131. 
(This changes in the IC --f co limit [14].) Even a more realistic planar model, in which 
an m = (T = 0 nematic-like (n) component (oriented normal to the plane of the qUh." 
wavevectors, see table 1) is included in the order parameter pf , (x ) ,  does not become 
the ground state at physical values of IC in the absence of an applied field [lo, 131. This 
latter structure (space group p6; henceforth referred to as HZD) can, however, become 
thermodynamically stable when e # 0. This theoretical prediction [5] has since been 
confirmed experimentally [7]. Moreover, there is an additional thermodynamically 
stable hexagonal structure in the (IC, t ,  e) phase diagram in addition to HZD, having 
a three rather than a two dimensional character [7]. We now turn to its theoretical 
description. 

To model a three dimensional hexagonal structure, at least one additional (T # 0 
Fourier component in p f , ( x )  is required. It's associated wavevector is perpendicular 
to the basal (b) plane (i.e. to the plane formed by the equilateral triangle of wavevectors 
qUb,". We label this wavevector qOh,", with magnitude qh = a;"q. The subscript 
indicates that this vector is along the hexagonal (h) axis of the cell. Of course, n = 1 
for this set of wavevectors; we therefore drop this index. The local axis system 
associated with q,, is given in table 1 .  As discussed earlier, we take its tensor amplitude 
to have an m = 2 component only. Since q,, I qOa+, adding this Fourier component 
alone does not result in any new contributions to the third order termf, in the Landau 
free energy. Such contributions, which are essential if the structure is to become the 
ground state somewhere in the phase diagram, come only from triangles of wave- 
vectors [2b, lo]. We must therefore add at least one further set of wavevectors which, 
taken together with those in the basal plane and that along the hexagonal axis, form 
triangles. This set of diagonal ( d )  wavevectors are just the sums: fq,,,, + quh and 
their negatives. There are then six n > 0 vectors in this set, which we label qgd,,,=~. , 6 .  

Their magnitude is qd = ali2q, with cd = ( T ~  + (Th ,  and their local axis systems are 
given in table 1. As always, they have tensor amplitudes with an m = 2 component 
only. A diagram of the wavevectors with (T = (Tb, d h  and dd is given in figure 1. 

Figure 1 .  Wavevectors in the Fourier decomposition of the order parameter for H 3 D .  Shown 
are (a) the three basal plane wavevectors, and (b )  the x-z plane cross section, containing 
the vectors i q b h , t ,  qu,,, qua[ and qOa4. The other o, wavevectors are obtained by 2n/3 
rotations about z .  Details are given in table 1 .  

Consider now the phases I)~((T, n) for the three dimensional structure. For any 
hexagonal symmetry class, the three n > 0 basal plane wavevectors in table 1 must 
have the same phase, thus t+h2(ob, n = 1,2,3) = t,bb. As noted by Pikranski, Cladis 
and Barbet-Massin [7], the possible space groups for a hexagonal BP are P6,22 (Di) 
and P6,22(D;). In both of these, the basal plane wavevectors q,,,, are twofold 
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782 R. M. Hornreich and S. Shtrikman 

symmetry axes of the space group; thus I,$b = 0 or z. In addition, it is clear that the 
free energy of the structure cannot depend upon I,$z(ah), which we therefore set equal 
to zero. 

Consider next the phases I l / z ( a d ,  n = 1, , , . , 6). These do depend upon which of 
the previous space groups characterizes the hexagonal phase. For P6,22 three 
successive applications of the 6, screw element take qud,l to qsd,4. There is also an overall 
translation of half of a unit cell along the hexagonal axis, equivalent to a phase shift 
of n. Now, since the wavevectors 2 qub,l have the same associated phase, it follows that 
the contributions to from the two triangles, (qub,,, - quh, q.,!.~) and (- quh.l, 
- qoh, qu,,,4), have opposite algebraic signs. Thus, the net contribution from all tri- 
angles of this type to& vanishes for the space group P6122. On the other hand, for 
P6222, the total phase shift resulting from three successive applications of the 62 screw 
element is 2 ~ .  In this case, the contributions to & from the two triangles noted 
previously have the same algebraic sign. Thus the net contribution from all the 
triangles of this type off3 need not vanish and it can result [2b] in a lowering of the 
free energy of an P6222 structure. We therefore concentrate on this space group as an 
H3D model structure. 

From figure 1, we see that successive 6* rotations about the hexagonal axis 
permute the qoc,,n wavevectors in the order: 1 + 6 -, 2 --t 4 + 3 --f 5 --f 1, etc. In 
addition, each such operation shifts the phase of the complex Fourier amplitude 
associated with each qUdln wavevector by 21113. Thus, in order for each triangle 
composed of a base, hexagonal and diagonal wavevector to contribute equally tof;, 
it is necessary to balance this phase shift by setting 

~ , $ ~ ( o ~ ,  n + 1 )  = I,$~(Q, n) - 243,  (12) 
for n = 1, . . . , 5. Finally, in order to maximize (the magnitude of) this third order 
contribution, we set [2b] &(ad, 1) = 0 or z. 

To summarize, we model possible H”’ phases by an order parameter which is 
invariant under the space group P62 22. It contains four independent amplitudes: 
p2(ab) = &, p2(uh) = ph, & ( a d )  = p d  and po(o, = 0) E p n .  These are, respectively, 
the m = 2 Fourier amplitudes associated with the basal, hexagonal and diagonal 
wavevectors, and that of the zero wavevector (nematic-like) tensor component which 
couples to the applied field. We consider here only the case pn > 0 (positive electric 
and/or magnetic anisotropy). Since, without loss of generality, we can set ad = 1, 
there are only two other independent quantities, the dimensional scale q and the 
ratio dh/adb. We next calculate the free energy f as a function of pi,(x), i.e. as a 
function of these six scalar quantities. These are then fixed by minimization of the free 
energy. 

For cubic and icosahedral BP structures, we have shown [2b, 11,151 that the 
coefficients of the third and fourth order terms making up the relevant free energy 
expression can be efficiently obtained numerically. That is, each such term is a product 
of a coefficient and three or four of the Fourier amplitudes; these coefficients are easily 
obtained with six figure accuracy by numerical integration. For H3D, however, the 
coefficients are, in general, dependent upon a,/@,,. We have therefore employed a 
different approach, wherein REDUCE, a symbolic manipulator, was used to calculate 
free energy terms. For this purpose, the applied field e was taken to be along the 
hexagonal axis of the structure since this minimizesf,JD for pn > 0. In addition, the 
phases 4h2(fih, n) and I,$z(ad, 1) were set equal to zero. This is not a serious restriction, 
as the free energy functional corresponding to values of n for either or both of these 
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Invited Lecture: Hexagonal cholesteric blue phases 783 

phase factors can be obtained by simply reversing the algebraic sign of terms containing 
odd powers of & and/or p d  in the expression for the free energy. 

The resulting expression for the H3D free energyfH3D is 

f H 3 D  = fi +fi + h  + A ,  (13) 

fi = -2e2pn, (14 a> 
fi = t [ t p i  + (t  - 21c2sr + ds2r2)pi + (t - 21c2cr + 1c2c22)p; 

+ ( t  - 27c2r + 7c2r2)&], (14 b) 

+ 3 ~ n d  - + p n d  + #(3c2 - 1)pnd - 
+ h(7c4 - 12c3s + xC3 + 2oC5 - 142 - 12c + 12s 

4- 12CS + 15)pbp; - $ J ~ ( c s  + C + s + I)&,ph/&, 

with (for positive dielectric anisotropy) 

h = 

(144  
4 4 233 4 f4 = pn + ph + 192pb + 2 d ~ i  + ?d/d + 

+&(251c8 - 312~’ + 2 1 2 ~ ~  + 504~’ - 30c4 + 5 0 4 ~ ~  + 2 1 2 ~ ~  
+ $(3c4 - 6c2 + 7)dd i  

- 312c + 891)~; + $(3c4 + 4c3 + 18c2 + 4c + 19)pip; 

+ ;7 J6(3cs - 4c2 - 3c + s - l)piphpd + A(- 12c4 - 27c3 

+ 42.7 + 15c2 + 39c - 8s - 56)ptpi + &J6c2( - c4 + 4c3 

+ 2C2 - - 9)phd + Q P n d  - J6(C 1 ) P n P h P h P d  

+ &(- 15c4 + 2 4 ~ ~ ~  + 8c2s + 42c2 - 2 4 ~ ~  + 2 4 ~  - 8s - 19)pnpb&. 

( 1 4 4  
Here, remembering that o, + oh = od = I ,  we have defined the quantities 

s = Job, C = doh, 
with c2 + s2 = 1. Also, from equations (9) and (lo), 

( S d  + w; + P 3  
( S 2 d  + C 2 d  + P i )  

r =  

Equations (1 3)-( 15) summarize the free energy functional for an structure with 
space group symmetry P6,22 in terms of the parameters in the order parameter ptij(x). 
Note that when ph = p d  = 0, we obtain the free energy expression for the two 
dimensional hexagonal structure found earlier [5]. Further, when .& = ph = pd = 0,  
equations (1 3) and (14) are just those characterizing a disordered or nematic (N) phase 
in an external field [5,16]. Thus, in any region of the phase diagram in which either 
H2D or N has a lower free energy than H3D, the minimization off”3~ automatically 
yields the two dimensional or nematic structure accordingly. 

2.3. The thermodynamic phase diagram 
The minimization of f H 3 ~  was carried out numerically for different points in the 

(IC, t, e) phase space using gradient search methods. Both analytical and numerical 
computations of the gradient vector were employed and identical results were 
obtained. Since gradient routines give only local minima, a systematic search for the 
global minimum was made by initiating the procedure at  different points in the 
parameter space. 
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784 R. M. Hornreich and S. Shtrikman 

To determine the thermodynamic phase diagram, the free energy value obtained 
by minimizingf,lo was compared with those of other possible structures for arbitrary 
values of ( K ,  t ,  e). In addition to the three structures, N, H3D and HZD, we considered 
the cubic structures 02, 05, Oz, 0; and O:, and the usual cholesteric helicoidal phase 
(C). As noted in $1, the applied field does not, strictly, couple to the order parameter 
of a cubic phase since the latter cannot have an m = CJ = 0 Fourier component. 
Therefore, including such a coupling necessitates a lowering of the symmetry, e.g. to 
rhombohedra1 or tetragonal. There is then a non-zero p, Fourier amplitude which, in 
the weak field limit, is proportional to e2 and the termf; inf(see equation (11)) is 
proportional to e4. While it is possible to take this correction into account, it has been 
shown [6] that it is indeed small in the field region of interest [5,6] .  We therefore use 
(as done previously [ 5 ] )  the e = 0 results obtained elsewhere [I 11 for the free energies 
of the three cubic structures. As these expressions are rather long, we do not repeat 
them here. Given the other approximations made ( e g  the limited number of Fourier 
components in fand  the restriction to m = 2 amplitudes for non-zero wavevectors) 
this is reasonable. 

The field dependent free energy of the C phase in the weak field limit has also been 
given elsewhere [ 5 ] .  It has the simple form 

wherep,andpL, areamplitudesofthem = a = Oand them = 2, CJ = r = 1 Fourier 
components, respectively. This expression must be minimized with respect to these 
two amplitudes. 

Portions of the thermodynamic phase diagram, obtained by minimizing and 
comparing the free energies of the structures noted previously, are given in figure 2; 
the stable structures in the (e’, t )  plane for K = 1, 1.3, 1.5 and 1.7 are shown. We may 
summarize the results in the figure as follows. 

(a)  The cubic BP (only O2 exists in the temperature range shown in the figure) is 
always unstable in a sufficiently strong external field. 

(b)  There is always a temperature range in which a three dimensional hexagonal 
phase appears when O2 becomes unstable. We label this structure H:”. 

(c) For still higher field values, H:D ceases to be stable. 
( d )  For K = 1 (see figure 2 (a)),  the Ha” region of the phase diagram is bounded 

by 02, N, C and H2D. The latter, in particular, appears for fixed t in a higher applied 
field than HiD. 

(e)  For K = 1.3, 1.5, and 1.7, the HiD region is bounded byjve  different struc- 
tures. Here there exists a second stable three dimensional hexagonal phase in addition 
to H:D, which is labelled HiD in figures 2 (b)-2 ( d ) .  Both H3D structures are charac- 
terized by the P6,22 space group. They differ in their phases factors, i.e. 

ED: @ 2 ( 0 b ,  f l )  = @Z(CJd, 1) = 0, (17 4 
HiD: $2(a6, n) = $ 2 ( ~ d ,  1) = x. (17 b) 

This change in the phases of the structures is similar [ 1 11 to that differentiating 0: and 
0: from 0;. 

(f) The HiD region, like H2D, also appears, for fixed K and t ,  in higher applied 
fields than H:’ with, roughly, HZD lying above HiD in the (e,  t )  phase plane. 

(g)  At still higher field values, all the hexagonal phases (and C) eventually become 
unstable and N is the only stable phase. 
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Figure 2. Cross sections of the thermodynamic phase diagram. Shown is the field (squared)- 
temperature (e2,  t )  plane for the following values of the chirality parameter: (a) K = 1, 
(b) K = 1.3, (c) K = 1.5 and ( d )  K = 1.7. Shown are the regions in the phase diagram 
occupied by the nematic phase (N), the cholesteric helicoidal phase (C),  the simple cubic 
phase (O'), the two dimensional hexagonal phase (H2D), and two three dimensional 
hexagonal phases (H:D and HiD). 
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Tablc 2 .  Fourier amplitudes and unit cell parameters for the two three dimensional 
hexagonal structures. The point chosen is on thc phase boundary separating these 
structures. 

K = 1.3; t = 2.1; e = 0.3 

ph = 0.46, ph = 0.17, pd = 0.15, pn = 0.15, r = 1.21, c = 0.57,f = -0-041 
pb = 0.29, ti,, = 0.19, pd = 0-39, pn = 0.17, r = 1.05, c = 0.30,f = -0.041 

- 
H:D: 
HiD: 

Our main theoretical result is that, in an applied field, bsth two and three 
dimensional hexagonal phases can be thermodynamically stable, at least within the 
framework of possible structures considered here. For fixed IC and t an H3” structure 
always occurs in a lower field than HZD, in agreement with the experimental results 
of Pieranski, Cladis, and Barbet-Massin [7]. In addition, there is the possibility that 
two different H3D structures can exist in different regions of the phase diagram. 

The obvious method of distinguishing between these two structures would be to 
measure the intensities of the Bragg reflections corresponding to the amplitudes of the 
Fourier components. As an example we give, in table 2, the intensities characterizing 
Ha” and HiD at a point (K = 1.3, t = 2.1, e = 0.3) which is on the thermodynamical 
phase boundary separating these two structures. However, in practice [7,8] the only 
reflection accessible experimentally was that along the hexagonal axis, which is 
proportional to p i .  Thus, identifying an HiD or HiD structure by measuring its b, h and 
d Bragg reflections and comparing measured intensity ratios with theoretical ones has 
not yet been possible. In 52.4 we consider, therefore, an alternative method for 
identifying the different hexagonal structures experimentally. 

The signature of the transition from a three to a two dimensional hexagonal phase 
is the disappearance of the Bragg reflection parallel to the hexagonal axis, This is easy 
to observe experimentally [7]. However, detecting a transition between HiD and Hi” 
(if both, in fact, exist) may be more difficult. For example, the intensity ratio biI0/ 
b;lb, from table 2, is 0.82. This jump of 18 per cent should be observable as a function 
of e. However, if the experimental amplitudes differ from the theoretical estimates by 
only f 10 per cent, the peak intensity ratio could be very close to unity, making 
experimental confirmation of a phase transition by an intensity measurement difficult. 
Alternately, the position of this Bragg peak as a function of e could be measured. 
Theoretically, this wavelength is proportional to rs2 which, from table 2, changes by 
approximately 15 per cent at the H2D to HiD transition. Even if the actual shift is 
considerably smaller than this estimate, it should be observable as line positions can 
generally be measured with a precision of 1-2 per cent. 

2.4. Theoretical N.M.R. spectra 
In earlier work [I  1,17,18] we pointed out that N.M.R. spectroscopy can be a 

convenient technique for differentiating between different cholesteric structures. 
Theoretical spectra for the C phase and for cubic BP [I 1,171, particularly when partial 
ordering of domains in the latter by the magnetic field is taken into account [IS], are 
in good agreement with experimental results [ 191. Since the method used to calculate 
the theoretical deuterium N.M.R. spectra has been described elsewhere [17], we do not 
discuss it here. We note only that all theoretical spectra were calculated for the case 
of polycrystalline samples, with the hexagonal axes of the crystallites aligned parallel 
to the applied field. Perpendicular to this direction, the distribution was random. 
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K = 1.3 
t =2.0 
e*=.12 

-4 0 4 

Figure 3. Theoretical deuterium N.M.R. spectra for (a)  the two dimensional hexagonal 
structure HZD and (b), (c) the three dimensional hexagonal structures H2D and HiD, 
respectively. The specimens are taken to be partially aligned such that their hexagonal 
axis is aligned with the applied field (which may be either magnetic or both magnetic and 
electric). 

Since a magnetic field is always present in an N.M.R. experiment, the term ‘applied 
field’ here includes this field in addition to the electric field, if any. In the latter case 
both fields are aligned with the hexagonal axes of the crystallites. Typical results, for 
H2D, H2D and HiD are given in figure 3. Consider first HZD (see figure 3(a)). Its spectrum 
is quite different from those of the cubic BP and also that of the C phase [ l l ,  17,181. 
This spectrum also differs significantly from those of the two three dimensional 
hexagonal structures in figures 3 (b)  and 3 (c).  Of the latter two, the HiD spectrum has 
a pair of sharp peaks whereas for HiD there are three well-split doublets. 

Summarizing, it appears, in particular, that the differences in the deuterium 
N.M.R. spectra of the two possible three dimensional hexagonal structures could 
be sufficient to distinguish between them. Thus, this technique deserves further 
consideration. 

3. Discussion 
In this paper we have extended earlier work on the phase diagram of cholesterics 

in an applied field [5 ] .  In addition to the structures considered earlier (cubic, helicoidal 
cholesteric, nematic and two dimensional hexagonal), we have considered the 
possibility that three dimensional hexagonal structures may characterize the ground 
state in some region of the chirality-temperature-field space. Our main result (see 
figure 2) is that such structures can indeed exist, in agreement with experiment [7]. 
Moreover, we find that two different three dimensional hexagonal phases may appear, 
both having the same space group, but differing in their structure factors. These 
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788 R. M. Hornreich and S. Shtrikman 

phases are in addition to the two dimensional hexagonal one considered earlier, which 
remains the stable structure in another part of the phase diagram. 

Since the observed H3D phase appears in a lower field than H2D, it is more likely 
that H:D is the structure seen experimentally. However, confirmation of this and, in 
particular, the observation of a second H3D phase would be further evidence for the 
usefulness of the Landau theory approach to the cholesteric BP. Regarding HiD, it is 
important to note that, theoretically, it occurs in systems with shorter pitches than 
those in which H2D is predicted. Since Bragg scattering measurements, so far at least, 
has been limited to reflections parallel to the hexagonal axis [7,8], we suggest that 
N.M.R. studies may be an additional useful approach to characterizing the hexagonal 
phases. 

We have already noted that the theoretical phase diagram is in agreement with the 
experimental finding that H3D appears in a lower field than H2D. Lacking, however, 
is the observed [7,8,20] C phase region between HZD and N. This is possibly due to 
our ignoring distortions (e.g. additional Fourier components) in the order parameter 
for the helicoidal structure. Including such terms would lowerf;. and could, therefore, 
result in the appearance of this phase between HZD and N. However, this requires 
further study. 

The main limitation on our results is that a body-centred tetragonal phase (T3D), 
which has been observed experimentally [7], was not considered. Extending the 
theoretical model to include T3D is straight forward, but time consuming. Whereas it 
was sufficient to include only three non-zero wavevectors sets for H3D, a realistic T3D 
model requiresfive: basal (n = 2), tetragonal axis (n = l),  vertex-to-body centre 
(n = 4), face diagonal (n = 4) and base diagonal (n = 2) vector sets. This is 
necessary as the shape and size of the tetragonal cell can be such that the magnitudes 
of these five vector sets aZZ lie between the smallest (basal) and largest (diagonal) of 
the H3D structure. With the addition of the nematic-like component of the order 
parameter, we see that a minimal description of T3D requires six order parameter 
components, compared with four for H3D. This approximately increases the number 
of terms inf; and f4 by factors of two and four, respectively. Nevertheless, given that 
experimental results show that T3D exists, this structure must be included in order to 
have a complete theoretical model. 

To summarize, we have shown that both two and three dimensional hexagonal 
structures can exist in cholesteric liquid crystals in the presence of an applied field. In 
particular, the results indicate that two different three dimensional hexagonal phases 
may exist. Some avenues for further experimental and theoretical work have been 
noted. 
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University, where part of this work was carried out. We are grateful to P. Pitranski 
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